
research papers

68 Huang, Dudley and Zhao � Forbidden X-ray wavefields Acta Cryst. (2001). A57, 68±75

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 11 July 2000

Accepted 26 September 2000

# 2001 International Union of Crystallography

Printed in Great Britain ± all rights reserved

Forbidden X-ray wavefields of three-beam Bragg
reflections from thick crystals

X. R. Huang,* M. Dudley and J. Y. Zhao²

Department of Materials Science and Engineering, State University of New York at Stony Brook,

Stony Brook, New York 11794, USA. Correspondence e-mail: xiahuang@ms.cc.sunysb.edu

A detailed analysis of a three-beam diffraction dispersion surface is performed

to study the forbidden wave®elds of thick-crystal Bragg re¯ections. From the

asymptotic transition between two- and three-beam diffraction, it is found that

the excitation state of each wave®eld can be accurately determined with the two-

beam criterion. Consequently, Bragg-case three-beam diffraction from thick

crystals is either a four-mode diffraction process for the Bragg±Laue geometry

or a two-mode process for the Bragg±Bragg geometry, and the amplitudes of the

excited wave®elds can be completely determined by the entrance boundary

conditions. Based on this picture, the intrinsic mechanisms underlying three-

beam Bragg re¯ections are clearly illustrated.

1. Introduction

Multiple (N)-beam X-ray diffraction has recently attracted

renewed attention due to its applications in solving the phase

problem and in analyzing X-ray polarization states (Chapman

et al., 1981; Chang, 1984; Shen & Finkelstein, 1992; HuÈ mmer &

Weckert, 1996; Weckert & HuÈ mmer, 1997, 1998; Shen, 1998).

Although considerable efforts have been made to ®nd

approximate but analytical solutions to N-beam diffraction

intensity (Juretschke, 1982; Hùier & Marthinsen, 1983;

HuÈ mmer & Billy, 1986; Shen, 1986, 1999, 2000), the widely

used approach is a numerical computation, which is based on

the dynamical diffraction theory and can give more accurate

results.

Compared to two-beam diffraction, N-beam diffraction

involves a much more complicated scattering process but the

diffracted intensities from this process can be easily computed

using well developed computational algorithms (Colella, 1974;

HuÈ mmer & Billy, 1982; Weckert & HuÈ mmer, 1990; Stepanov &

Ulyanenkov, 1994), even for cases where a large number of

re¯ections are excited simultaneously. In these algorithms, all

the physical aspects related to the scattering process are

automatically treated on the basis of the general dynamical

theory, which makes it unnecessary to know the calculation

details, including the con®guration of the dispersion surface

(DS), the excitation states of tiepoints, and the treatment of

X-ray absorption.

In some cases, however, it may be helpful to analyze the

intermediate results, which are usually hidden in the auto-

mated computation procedures, so as to obtain a clear

understanding of the dynamical diffraction mechanisms. The

purpose of this paper is to provide a direct picture of the

diffraction process for the commonly used three-beam

diffraction. We will focus on the main properties of Bragg-case

diffraction from semi-in®nite crystals since this geometry

exhibits a number of interesting phenomena similar to the well

known properties of two-beam diffraction, such as forbidden

wave®elds, extinction and total re¯ection. Our calculations

presented below will display explicitly the transition between

two- and three-beam cases and the similar excitation states of

tiepoints on the DS's. We will also discuss the difference

between the thick- and thin-crystal diffraction models.

2. Computational procedure

In three-beam diffraction involving two re¯ections h and g, the

wave equations are

��K2 ÿ k2
i �=k2

i �Di �
P

j

�iÿjDj�i� � 0 �i; j � 0; h; g�; �1�

where K is the magnitude of the incident wavevector (in

vacuum), the ki's are the magnitudes of the internal wave-

vectors, and the other symbols have well known meanings

(Pinsker, 1978). To change (1) into scalar equations, we adopt

the coordinate system of Fig. 1, in which the xz plane is the

two-beam scattering plane for the primary re¯ection h and the

polarization vectors for this re¯ection are de®ned according to

the two-beam convention. For re¯ection g, kg generally does

not lie in the xz plane, and the unit vector along kg must be
² Present address: Argonne National Laboratory, APS/XFD 431/D003,
Argonne, IL 60439, USA.



written as sg � n1x� n2y� n3z, where x, y, z are unit vectors

along x, y, z axes, respectively. If we let one polarization vector

of Dg be

rg � nxx� nzz;

where nx � n3=�n2
1 � n2

3�1=2 and nz � ÿn1=�n2
1 � n2

3�1=2 (or

nx � 1, nz � 0 if sg � �y), the other polarization vector

becomes

pg � sg � rg � n0xx� n0yy� n0zz:

Substituting Di � Di�ri �Di�pi in (1), one obtains the

following wave equations:

�0 0 � �h 0 0 ��gn0y
0 �0 0 � �h cos 2�B ��gu1 ��gu3

�h 0 �h 0 0 �hÿgn0y
0 �h cos 2�B 0 �h �hÿgu2 �hÿgu4

0 �gu1 0 �gÿhu2 �g 0

�gn0y �gu3 �gÿhn0y �gÿhu4 0 �g

0BBBBBB@

1CCCCCCA
D0�

D0�

Dh�

Dh�

Dg�

Dg�

0BBBBBB@

1CCCCCCA� 0;

�2�
where

�i � �0 � �K2 ÿ k2
i �=k2

i

u1�2� � nz cos �B � �ÿ� nx sin �B

u3�4� � n0z cos �B � �ÿ� n0x sin �B

and �B is the Bragg angle of re¯ection h. The DS is then

determined by jTj � 0, where T is the 6� 6 matrix in (2).

The most accurate method for solving the dispersion

equation of N-beam diffraction was developed by Colella

(1974), which is to calculate the eigenvectors of a 4N � 4N

scattering matrix and is applicable for any diffraction condi-

tions. Stepanov & Ulyanenkov (1994) then showed that the

matrix rank can be reduced by disregarding the wide-angle

specularly re¯ected beams. In fact, if no grazing beam is

involved, the scattering matrix related to T for the three-beam

case has the simplest 6� 6 form (HuÈ mmer & Billy, 1982). For

simplicity, here we only consider the cases with no beam

satisfying the grazing condition or the extreme backward

diffraction and we use the non-standard root-searching

method to solve jTj � 0 directly.

In Fig. 1, the deviation of the actual incidence wavevector

K0 from K0
0, the incident wavevector corresponding to the

exact three-beam geometrical diffraction position L, is

expressed as K�!a� �  a �, where a is the direction of the

so-called `azimuthal scan' ( scan) while a� is along the h

rocking-curve scan direction. Owing to the boundary condi-

tions at the entrance surface, each wavevector kj inside the

crystal is different from the corresponding vacuum wavevector

Kj by a component K�ns along the surface normal

( j � 0; h; g). Here

K0 � K0
0 ÿ K�!a� �  a �

and, for j � h and g,

Kj � K0
0 � jÿ K�!a� �  a � � K0

j ÿ K�!a� �  a �:
Thus, each wavevector inside the crystal is

kj � K0
j ÿ K�!a� �  a � ÿ K�ns; �3�

where j � 0; h; g. Based on this, the three geometrical

diffraction wavevectors satisfy

jK0
0j � jK0

hj � jK0
gj � K;

and the diagonal elements of T can be linearized in the vicinity

of L as (Pinsker, 1978):

�0 ' �0 � 2
0�;

�h;g ' �0 � 2�!a� �  a � � sh;g � 2
h;g�; �4�

where sj � kj=jkjj and 
j � ns � sj for j � 0; h; g. Then, the

dispersion equation can be transformed into a six-degree

polynomial equation:

f ��� � �6 � A1�
5 � . . .� A5�� A6 � 0: �5�

For the non-absorbing case we will consider in the following, it

can be veri®ed that all the coef®cients Aj are real numbers.

Under this condition, (5) may be conveniently solved by

Bairstow's method (Press et al., 1988), for both real and

complex roots. Subsequently, we can ®nd from any ®ve of the

six linear equations in (2) an `eigenvector' for each root of (5).

For non-absorbing crystals, the dispersion equation (5) of

the Laue geometry (
h > 0 and 
g > 0) always has six real

roots. For Bragg cases (
h < 0 or 
g < 0), however, (5) may

have conjugate complex roots, and the complex roots corre-

spond to the `gaps' of the DS where X-ray extinction occurs.

Note that if absorption is considered the roots of (5) are

usually complex in the entire angular range, and then it

becomes dif®cult to separate extinction from normal absorp-

tion. Therefore, it is convenient to neglect absorption for

studying the DS structure.
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Figure 1
Three-beam diffraction geometry (projection onto the xz plane). L is the
three-beam Laue point; T is a sphere (nearly a plane near L) of radius K
centered at the reciprocal origin O; a� � sin �Bx� cos �Bz and a � y are
two orthogonal unit vectors perpendicular to K0

0, the incident wavevector
corresponding to the exact Bragg condition; S represents the DS; ns is the
inward normal to the entrance surface.
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3. Bragg±Laue case

Let us consider the Bragg±Laue 004j040 re¯ections of GaAs1

with 004 being the symmetrical Bragg re¯ection and 040

undergoing Laue transmission diffraction. We choose the

calculation parameters as: incident wavelength � � 1:54 AÊ ,

involved structure factors F000 � 256, F004 � F040 � 163 and

F04�4 � 129 (electrons). Fig. 2 shows the root conditions of (5)

in the ! plane (the coordinate axes being a! and a ). When

the incidence direction falls in the gray or black regions, (5)

has complex roots. It is apparent that the vertical non-white

columns correspond to the full excitation regions of re¯ection

004 while the inclined stripes are related to 040. The inter-

section of these stripes thus represents the full excitation

region of three-beam diffraction, and the displacement of this

region from the Laue point L arises from the small refraction

effect.

For three-beam diffraction, the DS consists of six branches

(sheets) in the reciprocal space and the map in Fig. 2 actually

results from the projection of these sheets onto the ! plane.

To obtain a detailed picture of the three-dimensional DS, we

have to examine the sections of these sheets on a set of planes

perpendicular to a .

As a reference, Fig. 3(a) shows the DS of the pure two-beam

004 Bragg re¯ection based on the analytical solutions

� � ! cos �B � ��! sin 2�B � �0�2 ÿ C2j�hj2�1=2=2 sin �B; �6�
where C is the two-beam polarization factor. Then the three-

beam DS and its evolution with  are plotted in Figs. 3(b)±

3( f). The DS is actually represented in the ! � coordinate

system where the positive direction of the � axis is along the

inward normal ns of the entrance surface. Note that the ! axis

is along a� in Fig. 1, but in Fig. 3 we rotated this axis to be

horizontal. Thus, the DS is distorted with respect to the actual

DS in the reciprocal space. The current representation is

convenient for our calculation process and the distortion does

not change the physical quantities involved.

In Fig. 3(b), as the azimuthal  angle is deviated away from

the full excitation region of three-beam diffraction, the main

DS (half sheets labeled by S1, S2, S3 and S4) near the central

region is similar to the two-beam DS in Fig. 3(a), indicating

that these sheets are closely related to re¯ection 004.

However, two additional sheets (S5) at the lower region are

induced due to re¯ection 040. These two sheets `intersect'

sheets S2 at the bottom-left corner, splitting each sheet labeled

by S2 (or S5) into two parts, S2 and S02 (S5 and S05), separated by

two `gaps' G3 and G4.

On moving along the positive direction of  , the two gaps

at the left side move toward the full excitation center, and

further move to the upper-right corner when  has a large

positive value (Fig. 3f). In the full excitation region (Fig. 3d),

the four gaps are close to each other, giving rise to strong

interactions between the two re¯ections. Note that all the

gaps in Fig. 3 correspond to complex-root regions in Fig. 2.

Therefore, the evolution of the gaps with varying  can be

more clearly understood from Fig. 2.

The six-layer DS corresponds to the fact that there are six

possible `eigenvectors' for each incidence direction (!,  ). For

a thin plate, the eigenvector strengths can be determined by

exactly six boundary-condition equations: four at the entrance

surface and two at the back surface. For a semi-in®nite crystal,

however, the latter two equations do not exist, indicating that

only four wave modes are permitted. Therefore, it is important

to understand the excitation state of each wave for the semi-

in®nite-crystal case. This is an easy task when (5) has two pairs

of conjugate complex roots (corresponding to the black areas

in Fig. 2 or the `double-gap' angular ranges in Fig. 3). Under

this condition, the wave modes corresponding to the roots

with negative imaginary parts are naturally forbidden since

they would lead to increasing wave amplitudes toward the

inside of the crystal. For other situations, however, it becomes

complicated and we have to recall the two-beam diffraction

principles.

It is well known that tiepoints on the half sheets S2 and S3 in

Fig. 3(a) are not excited for two-beam Bragg re¯ection from

semi-in®nite crystals (forbidden tiepoints). The reason is that

these forbidden tiepoints correspond to X-ray energy ¯ows

propagating toward the entrance surface. From the mathe-

matical viewpoint, the waves related to the forbidden tiepoints

can lead to in®nitely increasing amplitudes with increasing

angular deviation (!) of the incidence (Pinsker, 1978; Authier,

1996).

For the three-beam case, one can see that, as the value of  
increases toward either the negative or the positive direction,

the three-beam case asymptotically transforms into a two-

beam case. Owing to such an asymptotical behavior, half

Figure 2
Root conditions of the dispersion equation (5) as a function of ! and  .
Equation (5) has six real roots in the white regions, four real roots and a
pair of conjugate complex roots in the gray regions, and two real roots
and two pairs of conjugate complex roots in the black regions.

1 The GaAs 004j040 (or 004j1�13 in x4) is a four-beam case in reality since 044
(1�11 for 004j1�13) is also excited. Therefore, the calculations presented are
based on hypothetical three-beam cases with the third re¯ection being
arti®cially excluded, but this does not affect our theoretical discussions of
three-beam diffraction.



sheets S2, S02 and S3 in Figs. 3(b)±3( f) have very similar

properties as S2 and S3 in Fig. 3(a). In fact, they form

continuous surfaces in the three-dimensional reciprocal space.

Thus, it is reasonable to assume that all tiepoints on the same

three-dimensional half sheet have the same excitation state.

Based on this assumption, tiepoints on all the half sheets S2, S02
and S3 in Figs. 3(b)±3( f) should be forbidden tiepoints. Such a

principle can be veri®ed by the following detailed calculations

of the diffracted intensities.

In Figs. 3(b)±3( f), if the complex roots with negative

imaginary parts and the real roots corresponding to the

tiepoints on the six DS half sheets labeled by S2, S02 and S3 are

disregarded, only four roots of (5) are left in the entire angular

region, corresponding to four eigenvectors for each incidence

direction (!,  ). Then the complex strength qi of each

eigenvector can be easily determined by the four boundary

equations at the entrance surface:

P4

i�1

qiD
�i�
0� � D�a�� ;P4

i�1

qiD
�i�
g� � 0;

P4

i�1

qiD
�i�
0� � D�a�� ;P4

i�1

qiD
�i�
g� � 0;

�7�

where D�a� � D
�a�
� r0 �D

�a�
� p0 is the amplitude of the incident

beam. Finally, the re¯ected beam is represented by

D
�a�
h � rh

P4

i�1

qiD
�i�
h� � ph

P4

i�1

qiD
�i�
h�: �8�

Fig. 4 shows six calculated 004 !-scan rocking curves

(diffracted intensity represented by the re¯ectivity R004)

corresponding to the DS's in Fig. 3. Here we have used a

plane-wave incident beam with D
�a�
� � 1 and D

�a�
� � 0. The

different rocking curves are mainly the results of the inter-

ference between the directly diffracted waves from 004

re¯ection and the Umweg waves arising from the detour

re¯ections 040 and 04�4. The

correctness of the calculations can

be proved by the following facts.

First, the main characteristics of the

!-scan rocking curves at large  
values are very close to that of the

two-beam rocking curve (Figs. 4b

and 4 f). The only difference is that

the small in¯uence of the detour

re¯ections makes the 004 rocking

curve slightly asymmetric, but such

an asymmetric feature disappears

when  becomes extremely large.

Second, our detailed calculations

show that, for each incidence

direction (!,  ), the re¯ectivity of

re¯ection 004 is always less than or

equal to 1. This is consistent with

the energy conservation principle.

We have also found that if an

excited eigenvector is replaced by a

non-excited eigenvector (even if

the difference between the two

roots is small), the re¯ectivity can

vary irregularly or can be in®nitely

large.

The most convincing proof is the

variation of the integrated intensity

I004,

I004� � /
R

R004� ;!� d!; �9�
with  . The thick solid curve in

Fig. 5 shows the  -dependent

integrated intensity pro®le calcu-

lated with the parameters used

above (the invariant triplet phase �
being zero). We have also arti®-

cially assigned non-zero values to

� in order to demonstrate the

phase effect. The other three
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Figure 3
Sections of the DS for the GaAs 004j040 Bragg±Laue case. (a) Two-beam DS, 004 symmetric Bragg
re¯ection. (b)±( f ) Three-beam DS sections at different  angles. Each black dot represents the
degenerate-root point (line) of a DS sheet. This unique point is used to unambiguously divide each sheet
into two half sheets. Note that the three-beam full excitation center is near  � ÿ20 mrad while
 � 0 mrad corresponds to the geometrical diffraction center.
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intensity pro®les in Fig. 5 correspond to three representative

phases �=2, � and 3�=2, respectively. It is apparent that the

principal features of all four pro®les are very consistent with

the general three-beam diffraction phenomena (Weckert &

HuÈ mmer, 1990; HuÈ mmer et al., 1990).

However, it is worth mentioning the Aufhellung effect in

Fig. 5. This effect has been well known to be the intensity

attenuation of the primary re¯ection h as a consequence of the

energy transfer from h to the secondary re¯ection g via

re¯ection gÿ h (in contrast to the Umweganregung effect of

intensity enhancement) (Mayer, 1928; Renninger, 1937). The

Aufhellung effect is usually observed when re¯ection h is

much stronger than g and is independent of the phase effect.

But for the present semi-in®nite-crystal case, where the

re¯ections involved are all strong re¯ections with comparable

strengths, the Aufhellung effect is still very strong.

4. Bragg±Bragg case

As a general principle for N-beam diffraction without grazing

beams, there are always 2�N ÿ NB� boundary-condition

equations (i.e. the continuity conditions of tangential dis-

placement components) at the entrance surface, where NB is

the number of Bragg-re¯ected beams. For the semi-in®nite-

crystal case, since the back-surface boundary conditions do

not exist, only 2�N ÿ NB� internal wave modes are allowed

such that they can be constrained by the entrance-boundary

conditions. This indicates that the Bragg±Bragg geometry of

three-beam diffraction for a semi-in®nite crystal is a two-mode

process.

To demonstrate this, let us use the re¯ection pair h � 004

and g � 1�13 in GaAs to construct the Bragg±Bragg geometry.

When 004 is a symmetric Bragg re¯ection and � � 1:54 AÊ , 1�13

is also a Bragg re¯ection. For this wavelength, the magnitudes

of the structure factors involved are jF000j � 256, jF004j � 163,

jF1�13j � 126, and jF�111j � 155. The related triplet phase � is

very small and we arti®cially let it be zero for simplicity.

The evolution of the 004j1�13 DS with  is illustrated by the

three sections in Fig. 6. It is obvious that the DS con®guration

of the Bragg±Bragg case is much different from that of the

Bragg±Laue case. This difference results from the opposite

signs of 
g: 
g > 0 for the Bragg±Laue case while 
g < 0 for the

Bragg±Bragg case. It is interesting that the DS sections in Fig.

6 are generally similar to the DS sections perpendicular to the

reciprocal vector h (HuÈ mmer & Weckert, 1996).

In Fig. 6(a), the three-beam DS can be considered to consist

of two sets of two-beam Bragg re¯ection DS's: the left set is

related to 1�13 and the right set corresponds to the primary

re¯ection 004. The connection between these two sets of DS's

is that they share two common segments labeled by S1, and

thus two S-shaped sheets are formed in the middle of Fig. 6(a)

(HuÈ mmer & Weckert, 1996). In Fig. 6(b) as the  angle is

adjusted to be near the full three-beam diffraction center, the

DS gaps are close to each other, giving rise to strong inter-

action between the two re¯ections. This is indicated by the

signi®cant distortion of segments S1. When  becomes posi-

tively large, the DS gaps related to 1�13 move to the right (Fig.

6c) and the shape of the 004 DS again transforms asymptoti-

cally into that of the two-beam DS.

Based on the excitation mode of two-beam Bragg re¯ection

discussed in x3, one can see immediately that, for the semi-

in®nite Bragg±Bragg case, tiepoints on the DS sheets labeled

S2, S3, S6 and S7 in Fig. 6 are forbidden tiepoints. This indicates

that for any incidence (!,  ) there are at most two tiepoints

that are excited. If the incidence direction falls into the

angular ranges where only one tiepoint is excited, the

dispersion equation (5) has a pair of conjugate complex roots,

of which only the one with a positive imaginary part is

physically valid. Similarly, the angular ranges in which no

tiepoint is excited correspond to the situation that (5) has two

pairs of conjugate roots, of which only two roots are valid.

Therefore, the semi-in®nite Bragg±Bragg case is indeed a

two-mode diffraction process. The complex strengths qj of the

Figure 5
Integrated intensity pro®les of the GaAs 004j040 three-beam diffraction
calculated with arti®cially assigned invariant triplet phases � � 0, �=2, �
and 3�=2.

Figure 4
!-scan rocking curves of 004 re¯ection in GaAs 004j040 three-beam
diffraction. (a) Two-beam diffraction rocking curve. (b)±( f ) Three-beam
rocking curves corresponding to the DS sections in Figs. 3(b)±3( f ),
respectively.



two eigenvectors can be determined by the two boundary

equations at the entrance surface:

P2

j�1

qjD
�j�
0� � D

�a�
� ;

P2

j�1

qjD
�j�
0� � D

�a�
� : �10�

Subsequently, the amplitudes of the re¯ected beams are

D
�a�
j � rj

P2

i�1

qiD
�i�
j� � pj

P2

i�1

qiD
�i�
j�; �11�

where j � h; g.

The solid curves in Fig. 7(a) represent three 004 re¯ection

!-scan rocking curves calculated with (10) and (11), from

which the transitions between the two- and three-beam cases

can be seen clearly. The dashed lines are the !-scan intensity

pro®les of the 1�13 re¯ection. Note that, for the 1�13 re¯ection,

the !-scan direction is a skew scan direction, which causes the

difference between the two kinds of intensity pro®le.

Similar to the Bragg±Laue case, the correctness of the two-

mode treatment can be seen from the fact that the re¯ectivity

values of the two re¯ections, R004 and R1�13, are always less than

or equal to 1. Such a principle remains valid even for the `total

re¯ectivity' R004 � R1�13. The total re¯ectivity pro®les are

plotted in Fig. 7(b). These pro®les not only indicate clearly the

energy conservation principle but also the total-re¯ection

phenomenon in three-beam Bragg±Bragg diffraction.

5. Comparison with the thin-crystal case

For semi-in®nite-crystal diffraction, there are always some

speci®c wave modes that are forbidden according to the X-ray

energy propagation inside the crystal, and the above examples

have indicated that three-beam diffraction can be viewed as

four- and two-mode diffraction processes for the Bragg±Laue

and Bragg±Bragg geometries, respectively. In the thin-crystal

case, all the wave modes can be excited due to the scattering

from the back surface. Therefore, three-beam diffraction is a

full six-mode process in thin crystals.

A typical example of thin-crystal diffraction is the parallel-

plate model. For the Bragg±Bragg geometry, the strengths qj

of the six eigenvectors may be determined by boundary

conditions at both the entrance and back surfaces. The

entrance boundary conditions are the same as (10) and (11)

except that here we have six wave®elds. The back-surface

boundary-condition equations have the formP6

j�1

qjD
�j�
mn exp�2�itK�j� � 0; �12�

where the �j's are the (complex) roots of (5), t is the crystal

thickness, m � h; g and n � �; �. Figs. 8(a) and 8(b) show the

!-scan rocking curves of re¯ection 004 calculated with the six-

mode computation procedure for two different plate-thickness

values t � 10 and 50 mm, respectively. The dashed-line pro®le

in Fig. 8(a) is the result calculated with the two-mode proce-

dure for a semi-in®nite crystal. As a typical phenomenon of

thin-crystal diffraction (Batterman & Hildebrandt, 1968), the
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Figure 6
Typical DS sections of the GaAs 004=1�13 three-beam diffraction, Bragg±
Bragg geometry.

Figure 7
(a) !-scan rocking curves of 004 and 1�13 re¯ections calculated for a semi-
in®nite crystal. (b) Total re¯ectivity pro®les.
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six-mode intensity pro®les are signi®cantly modulated in the

angular ranges besides the main peaks, and the oscillation

frequency increases drastically with the crystal thickness. The

irregular oscillation amplitudes in Fig. 8(b) indicate that the

step used to calculate this pro®le was still too large compared

to the extremely small oscillation period.

Compared to the nearly one-dimensional intensity oscilla-

tion in the two-beam case, the intensity modulation of the

three-beam case is two-dimensional. This can be seen from the

inset of Fig. 8(a), which shows the intensity oscillation along

the  direction (for a ®xed ! angle).

Apart from the intensity oscillation, the rocking curves

calculated with the six-mode procedure are, in fact, very

similar to that from the two-mode procedure. In particular, the

intensities calculated by the two different procedures are

extremely close to each other in the main peak ranges

(extinction ranges). Authier (1996) has shown a similar

phenomenon for the two-beam case even when absorption is

considered. Here the similarity between the two kinds of

rocking curve in Fig. 6 justi®es again that the application of the

two-beam tiepoint excitation rule to the three-beam case is

successful for semi-in®nite-crystal diffraction.

By arti®cially assigning four representative triplet phases to

the GaAs 004j1�13 re¯ections, we have calculated the corre-

sponding  -scan integrated intensity pro®les by two- and six-

mode procedures, respectively. The results are shown in Fig. 9.

Obviously, slight intensity oscillation can still be observed on

the thin-crystal integrated intensity pro®les. The other differ-

ence is that the thin-crystal diffraction intensities are stronger

than those from a semi-in®nite crystal although we have used

the same parameters (except the thickness) to calculated these

two sets of intensity pro®les. The origin of this kind of

difference needs further investigation. Nevertheless, the

general features of the two kinds of pro®le are nearly the

same.

6. Discussion and conclusions

Since we have totally ignored X-ray absorption in the above

calculations, the results presented in this paper are mainly of

theoretical interest. In reality, absorption may be regarded as a

small perturbation to non-absorbing diffraction (Pinsker,

1978) but, in general, the in¯uence of such a perturbation

on thick-crystal diffraction intensities cannot be neglected.

Owing to the limitation of our current root-searching method,

we are not able to provide a real absorption example.

However, from the two-beam diffraction picture, absorption

has little impact on the DS con®guration and on the basic

diffraction principles. In this sense, the general diffraction

mechanisms of three-beam diffraction from absorbing crystals

are believed to be the same as that of the non-absorbing case.

To fully treat X-ray absorption in N-beam diffraction, one

has to use the standard methods mentioned earlier to diag-

onalize the non-Hermitian scattering matrix so as to obtain the

eigenvalues and eigenvectors. The eigenvalues (�'s) are

generally complex even outside the extinction ranges for

absorbing crystals. It has been pointed out that there are

Figure 8
Intensity modulation calculated with the six-mode procedure. 004=1�13
Bragg±Bragg diffraction in GaAs. (a) 004 !-scan rocking curve at
 � 40 mrad. Dashed line calculated with the two-mode procedure. Inset
demonstrates the intensity oscillation along the  direction (intensity not
integrated). (b) Short-period intensity oscillation in relatively thick plate.

Figure 9
Integrated intensity pro®les of the 004 re¯ection calculated for four
representative invariant triplet phases, GaAs 004=1�13 Bragg±Bragg case.
(a) Thin crystal, thickness t � 10 mm. (b) Semi-in®nite crystal.



always 2�N ÿ NB� wave modes that have damping amplitudes

toward the inside of the crystals for Bragg-case N-beam

diffraction (Pinsker, 1978; HuÈ mmer & Billy, 1982; Stepanov &

Ulyanenkov, 1994), and this principle has actually been proved

by Chang (1979). Based on this principle, one can instead

determine the excitation state of each wave mode from the

sign of the imaginary part of the eigenvalue � over the entire

angular range of thick-crystal diffraction. This is of course a

much simpler method for the semi-in®nite-crystal approxi-

mation. From our illustrations above, one can see indirectly

the origin of this principle.

In summary, through detailed analyses of the DS con®g-

urations in reciprocal space, we have demonstrated that there

always exist forbidden wave®elds in three-beam Bragg

re¯ections from thick crystals. The excitation state of each

wave®eld inside the crystal can be strictly determined using

the two-beam diffraction principle. Thus, three-beam diffrac-

tion in thick crystals is either a four-mode diffraction process

for the Bragg±Laue geometry or a two-mode process for the

Bragg±Bragg geometry. In each case, it was proved that the

diffracted intensities can be completely determined by the

entrance boundary conditions. Our calculations of non-

absorbing crystal diffraction also revealed some other intrinsic

properties of three-beam diffraction, including the extinction

(total re¯ection) properties, the asymptotic transition between

two- and three-beam diffraction, and the difference between

thin- and thick-crystal diffraction. These illustrations could be

helpful for one to understand the three-beam dynamical

diffraction mechanisms.
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